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This paper considers the transient motion of a viscous fluid in a container rotating 
with constant angular velocity. The principal objective is to study the manner 
in which an arbitrary initial state of motion becomes a rigid rotation. In  order to 
concentrate on the effects of viscosity, only the spherical container is studied here 
in great detail. A general theory will be presented in a subsequent publication. 

Several sources of non-uniform behaviour make the analysis difficult and 
complex. In  particular, there are three important time scales, viscous boundary 
layers, boundary-layer resonances at critical latitudes and intricate side-wall 
effects. The basic aproach consists of an expansion procedure by means of which 
the general inviscid solution is corrected for viscous effects and is made uniformly 
valid in time through the critical spin-up phase. Uniform validity is effected 
through the elimination of secular terms with unacceptable growth rates arising 
from the asymptotic perturbation series. 

The interior (inviscid) motion leads to a non-self-adjoint partial differential 
equation eigenvalue problem with many intriguing properties. The general 
expansion theorem, orthogonality relationships, and viscous decay factors are 
deduced and used to solve the arbitrary initial-value problem. It is shown that 
the depth averaged circulation about circular contours, x2 + y2 = r2, is extracted 
from the fluid in the spin-up time scale T = L(Ov)-*. This is accomplished by 
a secondary non-oscillatory convective motion produced by suction into the 
Ekman layer. The excess circulation not eliminated in this way excites 
inviscid inertial oscillations which are also caused to decay by the boundary 
layers in the same time scale. Some very small residual effects decay in the 
ordinary viscous diffusion time, but all the essential processes are concluded in 
the much shorter interval. All modal oscillations in a sphere are determined and 
several specific calculations of frequency and decay rate are made and compared 
with experimental data. Perhaps the most important of these concerns the mode 
corresponding to rigid internal motion about another axis which can be produced 
by impulsively changing the rotation axis of the container. Agreement between 
theory and experiment is very good in all cases compared thus far. 

1. Introduction 
We consider herein the flow of a fluid in a container rotating with constant 

angular velocity and the manner in which an arbitrary initial state of motion is 
resolved into rigid rotation. Of particular interest is the special case of an 
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already rigidly rotating fluid subjected to an impulsive change in the angular 
velocity of the container. 

Spin-up, or the adjustment solely to a change in magnitude of rotation speed, 
has been discussed extensively by Greenspan & Howard (1963) (hereafter 
referred to as GH).  Bondi & Lyttleton (1948) and Charney & Eliassen (1949), 
also considered aspects of the same problem. These studies show that the Ekman 
boundary layer plays the dominant role in the spin-up phenomenon byproducing 
a slow secondary convective motion through which all important changes occur. 
Suction into the boundary layer removes low angular momentum fluid from the 
interior, replacing it with high angular momentum fluid convected radially 
inward to conserve mass. The conservation of angular momentum provides for 
the increase in the angular velocity since the interior motion is essentially 
inviscid. The fluid entering the boundary layers stretches vortex lines and thereby 
increases the internal vorticity. The description in the case of spin-down is 
entirely similar. The spin-up time required to accomplish these changes in 
angular velocity and vorticity is T = L(Qv)-), where L is a characteristic length, 
Q is the rotation speed and v the viscosity. 

Stewartson & Roberts (1963) have examined the fluid motion produced by the 
precessional rotation of a fluid-filled ellipsoidal container. The significant feature 
of such problems is the fact that the container walls move the fluid about. The 
action of viscosity alone is more subtle but remarkably effective, none the less. 
In  order to concentrate solely on the effects of viscosity, we shall, for the most 
part, consider only the spherical container in great detail, and leave the study of 
more arbitrary container geometries to a subsequent report. The basic viscous 
processes are undoubtedly independent of container configuration. Stewartson 
& Roberts do incorporate viscous processes in their analysis by employing a 
method of successive corrections of an inviscid solution. This procedure has several 
serious shortcomings for present purposes; it  cannot be used, as developed, for the 
case of a spherical container and, moreover, does not lead directly to a solution 
that is uniformly valid in a sufficiently long time interval to include spin-up. 

Non-uniformity of one kind or another represents the major mathematical 
obstacle. The motion involves complicated time-dependent boundary layers 
which, in themselves, have singular features. In  addition, there are three time 
scales based respectively on the period of rotation, spin-up and viscous diffusion 
into the interior, and each of these is an order of magnitude different from the 
others. A form of solution is required that is valid at least through the critical 
spin-up phase, in order for all the important phenomena to be properly included 
in the analysis; the choice of method is governed by this end. 

2. Formulation 
In  terms of the following dimensionless quantities (unprimed) 

r' = Lr, t' = Q-lt, q' = eLQq, p'/p' = $QL2(s2 + y2) + eLZQ2p, R = QL2/v 

(r' beinga co-ordinate vector, t' the time, q' the velocity, p' the pressure, p' the 
density, where sQL characterizes the initial velocity distribution, e -g l), the 
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dimensionless equations of motion are, in a uniformly rotating co-ordinate 
sys tem , 

where k is the axis of rotation. The contribution of the non-linear terms can be 
shown to be relatively unimportant to the spin-up process as compared with that 
of viscosity. Accordingly, we need consider only the linear problem, and the 
Rossby number s may be effectively taken as zero. Therefore, the fundamentaJ 
boundary-value problem is 

I aqpt  + 2k x q + Vp = R-lAq, 

v .q  = 0, 

with q = 0 on solid boundaries and q ( x ,  y, z, 0 )  = q , ( x ,  y, z).  The initial velocity 
distribution q ( x ,  y, z, 0 )  must satisfy the mass conservation law and the boundary 
condition fi.q, = 0 a t  the container wall. In  other words, q, represents a 
possible state of fluid motion consistent with geometry and does not necessitate 
an instantaneous impulsive pressure adjustment. Only two of the three velocity 
components can be arbitrarily prescribed. Thus, the complete boundary-value 
problem for this configuration is, in cylindrical co-ordinates ( r ,  w ,  z), 

ut - 2v = -p ,  + R-l(u,, + u,,/r2 + u,, + u,/r - u/r2 - 2v,/r2), 

vl + 2u = - p J r  + R-l(v,, + v,,/r2 + v,, + v,/r + 2u,/r2 - v/r2), 

u, + v,/r + w, + u/r = 0, 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

w, = -pz  + R-l(w, + www/r2 + w, + w,/r), 

with the initial conditions u = u*, v = v*, w = w* a t  t = 0, and u = v = w = 0 on 
the bounding surface. Hereafter, unless otherwise noted, the container shall be 
a sphere of unit dimensionless radius so that the boundary conditions apply at the 
surface p = 1 ( r  = cos8, z = sin@. It is assumed that the initial conditions 
exhibit no boundary-layer behaviour. 

Although the formulation is now completed, a few brief remarks are deemed 
appropriate at this time to provide some insight into the general structure of the 
problem. 

If = k . V x q,  then it follows from (2.2) that 

v2p = 26, a g a t  - R - V ~  = zawiaz, awlat - R-VW = - ap/az 

or, as a single equation 

( a p t  - ~ - 1 ~ 2 ) ~ p  + 4a2p/az2 = 0. (2 .7)  

(The boundary condition for the pressure alone in the important case of inviscid 
motion. R = 00. is 

which is the equivalent of q . fi = 0 on p = 1.)  
43-2 
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The hyperbolic nature of the reduced system, R = co, and some of its unusual 
features have been discussed extensively in the literature (Phillips 1963 and 
Squire 1956) and will not be dwelt upon here. It is sufficient for present purposes 
to appreciate the order and complexity of the basic equations and to recognize 
that the possible wave motions are both diffusive and dispersive in character. 

Separable solutions of the reduced system, ( 2 . 7 )  with R = co and ( 2 . 8 ) ,  exist 
and are of the form 

p = #(r ,  z )  eihweihl,  

where k is an integer. The eigenvalue problem for the determination of 4 and h 
is then 

with 

on p = 1. These solutions represent possible inviscid inertial oscillations which 
can persist inside the container. 

Since it is the core of this entire analysis, the mathematical properties of this 
intriguing non-self-adjoint boundary-value problem are developed in detail in 
the next section. Aspects of PoincarB’s eigenvalue problem, as the foregoing is 
known, have been studied previously (Cartan 1922; Lyttleton 1953) in connexion 
with the stability of rotating liquid masses. 

In its barest form, the plan of attack calls for the computation of the viscous 
corrections to each inviscid mode and the construction of a solution that is 
uniformly valid in time through the spin-up phase, t = Ri. Thus if y(r, w , z , ~ )  
represents any of the four functions, u, v, w, p ,  then a, solution will be sought of 
the form 

y = Yno(r, w, z) eSnt + B-&ynl(r, w, z, t )  + . . . 
+ gn&, 8, t )  + R-%,1(5,0, t )  + * * * 

with 

Here Yno(r, w, z )  ehot is the form of the modal solution appropriate to each depen- 
dent variable, the tilde symbol denotes a boundary-layer function, 5 = I&( 1 - p )  
is the stretched boundary-layer co-ordinate and I9 is the polar angle. The para- 
meter snl is of basic importance, for its real part determines the decay rate of the 
entire inviscid mode, whereas Im snl represents the viscous modification of the 
fundamental eigenfrequency sn0 (denoted previously by in). 

The complete development of these ideas constitutes 5 4 and this brief exposi- 
tion is intended to provide some overall perspective and a brief outline of the 
work to follow. 

s, = Sn0 + R-k,, + . . . . 

3. The inviscid problem 
The equations of motion governing the inviscid interior flow are obtained from 

( 2 . 3 )  to ( 2 . 6 )  by setting R = 00. The boundary conditions reduce merely to the 
requirement that the normal component of velocity q . fi at the container walls 
be zero. 
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To examine the possible inertial oscillations, let 

( p ,  zc,zI, w) = (4, U ,  V ,  W )  ei(ht+kw), ( 3 .1 )  

where Ic is an integer and h is the eigenvalue; the basic equations then reduce to 

(3 .2 )  

(3 .3 )  

+ ~ A W  = - i a# laz ,  (3 .4 )  

( rU) ,+ ikV+(rW) ,  = 0. (3 .5 )  

rU+zW=O on p = l .  (3.6) 

&hU - V = - @$/at-, 

QihV + U = - iIc#/2r, 

The boundary condition remains 

The values [hi = 0 , 2  are somewhat exceptional possibilities and are discussed 
now prior to the general theory. Let h = 0, in which case it follows from (3 .4 )  
that $ = $(r) ,  and hence also that 

U = U ( r )  = -iIc$/2r, 

The substitution of these particular forms into (3 .5 )  yields 
V = V ( r )  = +d$/dr. 

(rW), = 0 or W = W(r).  
Thus all functions in this case depend on r alone. However, the boundary 
condition applied at positions z = 5 ( 1  - r2)* requires that 

rU(r)  + (1 - r2)) W ( r )  = o 
and rU(r)-(I-r2)*W(r) = 0, 

implying that U = W = 0. Therefore h = 0 is indeed an eigenvalue with eigen- 
function 

where $ is an arbitrary function. This mode will be called the spin-up mode. 

equations reduce to 

U = 0, V = *d$/dr, W = 0,  (3 .7 )  

Consider now the remaining exception, [ hl = 2.  In  this case, the momentum 

ihU - 2V = - $,., = - 2k$/r,  ihW = - $e, 

and the integration of the fist of these yields 
$ = F(z )~ -~”* ,  

F being an arbitrary function. To be physically acceptable, h = - 2k/ lk[  so that 
$ = F(z)  The second and third equations of the foregoing set then imply that 

U - i k V / [ k l  = -&Xdk1-1F(z), 

If U and W are considered as functions of F and V ,  the mass conservation 
equation can be used to  establish the relationship 

V = a[lkl rlk’-lF(z) +(rlk1+l/( [ kl + l))P”(z)]. 
Since all velocities are now expressed in terms of F(z) ,  the substitution of these 
expressions in the boundary condition leads to the differential equation 

w = -I( i k / lk l )  r’klF’(z). 

(1 -22)F’-2(1+ l k [ ) z F ’ -  jkl (pq + l )F = 0, (3 .8 )  
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which has the general solution 
F = A( 1 - ~ ) - l k '  +B( 1 + z)-lk'. (3.9) 

The function 3' is necessarily singular; all velocity components must also be 
singular at the poles, r = 0,  z = & 1. Therefore [ hl = 2 does not lead to physically 
acceptable solutions and is not a proper eigenvalue of the system. These positions 
are, however, limit points of the eigenvalue spectrum but further discussion of 
their possible significance will not be given here. 

If h + 0, -t 2, the velocity components may be eliminated from (3.2) to (3.5) to 
obtain the fundamental eigenvalue problem 

with 

(3.10) 

(3.11) 

o n p  = 1. 
This system has the following properties: 
Property 1. The eigenvalues are real. Multiply (3.10) by the conjugate of 9, qS, 

and integrate over the volume of the sphere; 

or upon integrating by parts 

The first integral is simplified by using the boundary conditions and the result is 
+ 2k11/h+12 + (1 - 4/h2) I ,  = 0, (3.13) 

and every integral is positive. (3.13) is a simple quadratic equation for 2/A whose 
solution is 2/h = +[kI1 If: (k21;+ 4J?3(&+Ij))*]Ig1, (3.14) 

and this shows that his real since the discriminant is always positive. For axially 
symmetric motions, k = 0,  it  is an immediate consequence of (3.13) that 

(1  -4/h2) < 0 or lhl < 2. 

This eigenvalue bound also holds for the non-symmetric eigenfunctions but the 
general proof is omitted. 

Since the eigenvalues are real, the eigenfunctions are in general proportional 
to real functions, a, or $ = A @ ,  but the constant A may be complex. Therefore 
the remaining properties need be established only on the basis that the eigen. 
functions are real. 
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Furthermore, if (A ,  q5) is an eigenvalue-eigenfunction pair corresponding to 
index k, then ( -A, q5) corresponds to index - k. This follows directly from the 
form of the equations. 

Property 2 .  Orthogonality. Let (A, #), (p ,  Y), be any two different eigenvalue- 
eigenfunction pairs corresponding to the same index k. Upon multiplying (3.10) 
by Y and the analogous equation for Y by q5, subtracting the two and integrating 
over the volume of the sphere (Green's theorem) it is established that 

(3.15) 

the first integral of this expression is a surface integral in terms of the polar angle 6' 
with r = sine, x = cos6' and p = 1. Note that the eigenvalues appear in the 
orthogonality relationship, a fact related to the non self-adjointness. An ex- 
tremely useful symmetric form of this relationship, obtained by some simple 
manipulations, is 

(3.16) 

The complete modes expressed in (3.1), which correspond to different values of k, 
are already orthogonal to each other with respect to an integration over the 
variable w ,  because 

(2"exp[i(kl+k,)w]dw = 0 if k, + k,. 
J O  

Property 3. A partial expansion theorem. As a pre.lude to a complete expansion 
theorem, we must be able to determine how a, given initial disturbance is distri- 
buted among the various modes associated with the same index k. These modes 
are not orthogonal in the usual sense, and the means of calculating the Fourier 
coefficients is not obvious. If we confine our attention to the single integer k and 
denote by (An, @,) a characteristic pair with this index, then the general solution 
is 

the corresponding velocity components are 

An a@n W = iZ---. 
A, az 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Ordinarily in an initial-value problem two of the three velocity components will 
be prescribed; the task is now to find the coefficients An utilizing (3.16). The 
answer is provided by a knowledge of the physical quantities required to solve 
an initial-value problem for it is these quantities, when properly combined, 
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that allow use of the orthogonality relationship. From equation (2.7) with R = CO, 

it follows that both entities 

V2p = 2c and aV2p/at = 2aw/az 

must be prescribed at t = 0. In  addition the requirement ru+zw = 0 at p = 1, 
for all t ,  is reducible to the extra initial condition 

rp,.+zpB= 2rv on p = 1 for t = 0. 

Thus the knowledge a t  time zero of [, awlax in the sphere and v onp = 1 is sufficient 
to calculate the Fourier coefficients. 

Suppose now that the velocity components U, V hence W are given in (3.18)- 
(3.20). I f  the vorticity component (parallel to the rotation axis) 

[ = [(rV),-iikU]/r 

is comnuted. it is found that 
I 

Therefore 

or by a simple integration by parts 

But 
so that 

and by subtracting (3.22) from (3.23) 

- JJEQ" r dr dz +Jon r2 VQ>, do  

One further integration by parts yields 

Finally from the knowledge of W 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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The calculation is finished by adding the last two expressions and using (3.16); 
the final result is 

with (3.27) 

Alternatively, this can be expressed as 

(3.28) 

The Fourier coefficients are now determined; it is interesting to note that the 
prescription of two arbitrary functions is required to accomplish the task. 

Property 4. The modal mean circulation is zero. Again let (A ,  Q) be a charac- 
teristic pair with index k; then the actual angular velocity corresponding to these 
values is 

21 = +( 1 - 1A2)-1 - + - Q eikoeihl. (3.29) 

The mean circulation about a contour of constant cylindrical radius r defined by 

4 (2 :; ) 

is obviously zero unless k = 0. In  the latter case, k = 0 with A =k 0, the basic 
equation, (3. lo), may be integrated directly with respect to z from zB = - (1 - r2)* 
to zT = (1  - r2)* to establish that 

(3.30) 

The integration of the last equation shows that 

rvda = 0 

because this quantity is zero at r = 0. Therefore the mean circulation is zero in 
every mode with non-zero frequency. 

The initial value problem formulated at the beginning of this section can now 
be solved completely. The presentation of further properties of the fundamental 
eigenvalue problem will be continued after the following short but important 
digression. 

3.1. The complete expansion theorem and the initial-value problem 

Denote by (h,k, @,k) the nth eigenvalue-eigenfiinction pair corresponding to 
index k with A,, + 0. The form of the eigenfunction when A = 0 is that of 
equation (3.7). Therefore the general separable solution of the inviscid boundary- 
value problem ((2.3)-(2.6) with R = co and ru+zw = 0 on p = 1) is 

(3.31) 
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t b ( r , W , Z , t )  =-@ A n k ( l - & h ; k ) - '  "nk) exp i(hn,t + kw), 

(3.32) 
n, k 

v(r, O,x,  t )  = vO(r) g I: A n k (  1 - *h#$k)-l (khnl: @,k + s k )  exp [ i ( h n k t  + k w ) ] ,  
n, k 2r ar 

(3.33) 

w(r, w ,  x ,  t )  = i k k s k e x p  [i(hnkt+ ko)], (3.34) 
n,k  8.2 

where vo(r) = $dcj0(r)/dr and the summation over the k index includes all integers, 
both positive and negative. It is necessary to recall a t  this time that if (A ,  @) is 
a characteristic pair corresponding to index k then ( - A, @) corresponds to index 
- k .  I n  other words 

The initial velocity distribution is arbitrarily prescribed consistent with mass 
conservation and the rigid wall boundary condition. Therefore a t  t = 0, let 
(zc, ZJ, w) = (a*, v,, w,) so that 

hn-k = @n-k = @nkm 

?&* ( T ,  w, 2 )  = - ti 2 A n k (  1 - ah&)-' 

v*(r ,w,Z) = z)o(r)++x Ank(1-$h;k ) - '  

(3.35) 
n, k 

a, k 

(3.37) 

The arbitrary function vo(r) can be determined at once by using property 4. 
Thus J02n dwJ(l-l')l 

rv* (r,  w ,  2) dz = 474 1 - r2)* rwo(r), 
- ( l -P' ) i  

1 j a n d w / ( l - r . ) *  
or vo(r) = dxv,(r, w, z )  = (w*(r, w ,  2 ) ) .  (3.38) 

The spin-up mode, h = 0, is the only mode possessing non-zero mean circulation. 
For a given distribution, the mean or depth averaged circulation 'excites' the 
spin-up mode, and is in effect removed from the fluid by the spin-up process 
detailed in G-H. The residual or zero mean circulation distribution stimulates the 
remaining infinite set of inertial oscillations, each of which will also be shown to 
decay in the same time scale. 

The generalized Fourier coefficients An, can be obtained by multiplying the 
preceding equations by e-ikw and integrating over the range of w ,  with the result 

4m(l-r2)* o - (1 -?.a)+ 

v** = v* -%, 

(3.40) 

(3.41) 
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The partial expansion formulae of property 3, equation (3.28), is used to complete 
the analysis 

Property 5. Explicit formulae for the eigenvalues and eigenfunctions. Equation 
(3.10) is actually Laplace's equation (in cylindrical co-ordinates) once the factor 
(1 - 4A;z) is formally absorbed into the z variable and, as such, it is separable in 
a modified oblate-spheroidal co-ordinate system. Let 

r = (4/(4--: , ) -712)*(1-l~.2)~,  x = (4/A:,-1)3y,u; (3.44) 

the surface of the sphere is then p = cose, 7 = (4/hik- l)-*. Note that the 
eigenvalue is involved as part of the transformation. 

The separable solutions in these co-ordinates are 

@n,c = Pt(T/cn,) p,k(l~.) (3.45) 

where P,k(x) is an associated Legendre function, and 

c,, = (1 - $%,)-*. 
The separation is simple but laborious and reference is made to Stewartson & 
Roberts (1963) for the essential details of a comparable calculation. Insertion of 
these modal solutions into the boundary condition (3.1 1) gives rise to the basic 
eigenvalue equation 

k P t ( x )  = (1 - x 2 )  d [ P : ( x ) ] / d ~  (3.46) 

with x = It is important to note that for eachpair of integers (n, k )  there are in 
general several eigenvalues. Thus there are several eigenfunctions of similar form, 
and a more complete notation is 

@nn& = pk(? l / cnmk)  pk(fiu) (3.47) 

with cnmk = (1 - $A&&*. Here An& is the mth eigenvahe associated with the 
Legendre function P:(x). The complete solution would then involve a triple 
summation over the indices n, m, k. The index m has a finite range, m = 1, . . . , M,, 
andM, is the total number of solutions of (3.46). For the most part, this notation 
is not used and it is assumed that some one-to-one correspondence between the 
index triple (n,  m, k )  and the index pair (n, k) is made. 

Property 6. The eigenvalue bound. The eigenvalues are related to the roots of 
the expression 

which can be also written as 

E(x)  = (1 - x 2 )  d [ P k ( ~ ) ] / d ~  - kP;(x), 2 = ' A  2 nk 

1 + z * d( 1 - X ) k  dkPn(x) 
E ( x )  = (1 -22) - [l-z] ax dxk - 

The zeros of E ( z )  are the same as thoseof d[(  1 - ~)~d~P~(x)/dx~]/dxexcept possibly 
for x = & 1, i.e. A,, = 2 but these are not significant anyway. However, 
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dkPn(x)/dxk is a polynomial of degree n-k  all of whose zeros are in the unit 
interval 1x1 < 1. Therefore.al1 n roots of ( l - ~ ) ~ d ~ P ~ ( x ) / d x ~  are inside the unit 
interval and the derivative of this function, a polynomial of degree n - 1, must 
have n - 1 zeros in the same span. Thus all the roots of E(x)  are in 

(Ihnkl 2), 

proving that the eigenvalues of the problem are less than two in absolute 
magnitude. 

Property 7. The eigenfunctions of property 6 are polynomials. The definition of 
the associated Legendre functions may be used to express the eigenfunctions of 

@ = Arka2(k+n)r2n/aqk+naruk+n, (3.48) (3.45) as 

where A is some constant. I n  terms of the transformation given in (3.44), 
nk 

a2$/arap = $hnkCnkZ($w+ $rir) + $rr(2/hnkCnkr) (r2 f ( l h i k C ; k )  z ” c ~ k )  

+ 2$z-z/hnkcnk f 2X$zz/hnkCnk; 
and in particular if q% = rZn, then 

4 = Azr2n--2, 

with A a different constant. The degree in r is reduced by two. If q% = xmr2n 
where m and n are integers then 

4P 

$ = AOZm+lr2n-2 + A zm-lr2n + A Zm+1r2n-2 + A Zm-lr2n-2. 
BP 1 2 3 9 (3.49) 

Ai are constants we shall leave undetermined. Therefore the differential term in 
(3.48) must be a polynomial in x and r2, P(z ,  r2), and the entire expression is of 
the form ank = rkP(z , r2) .  

The eigenfunctions corresponding to non-zero eigenvalues are polynomials. 
Strictly speaking, it has not been shown that all eigenfunctions are indeed of 

the functional form obtained by the separation process. There may be eigen- 
functions which remain undiscovered by this procedure, for no completeness 
theorem is available a t  present. It seems unlikely that any eigenfunctions exist 
other than those already deduced, but this is, of course, in the absence of proof, 
a conjecture. 

The eigenvalue spectrum has limit points at f 2 and although i t  is denumerable, 
i t  is also dense in the interval Ihl < 2. The full implications of these observations 
are being studied a t  present. 

4. Viscous effects 
The objective of this section is to determine the viscous modifications of the 

inviscid modes; the solution is required to be uniformly valid through spin-up. 
The corrections are also to be suitable for the solution of an initial-value problem 
in which the initial conditions exhibit no boundary-layer structure. The funda- 
mental equations of motion are (2.3) to (2.6). 

The modifications of the inviscid modes having non-zero frequency are con- 
sidered first; the spin-up mode has been analysed at length in (G-H) but is re- 
examined next from a slightly different point of view. 
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Let y(r ,  w, x ,  t )  be any one of the dependent variables u, v, w, p ,  then the appro- 
priate form of a modal solution incorporating the effect of viscosity is 

y = xbo(r,  w,  x) esnt+ Rby,,(r, w ,  x ,  t )  + . .. +gn0(5, w ,  6, t )  + 
R3gn1(67 w ,  6, t ,  + * * .  7 

s, = s,, + R-h,, + . . . , 
(4.1) 
(4.2) with 

where5 = R#( 1 - p),  8 is the polar angle and - denotes a boundary-layer function. 
Here Yno(r, w, x )  is the inviscid mode, related to (Dnk(r, x )  eikw with s,, = ih,, but 
in the interests of simplicity the subscript Ic notation is omitted until the final 
results are achieved. All boundary-layer functions aye zero initially. 

The ultimate purpose of this investigation is to compute the complex number 
s,, which will provide the total decay rate of the mode and its frequency altera- 
tion. This parameter is determined by the elimination of secular terms arising in 
the expansions whose growth rates are too rapid to satisfy the requirement of 
uniform validity through the spin-up phase, t = O(R3). 

No attempt will be made to compute higher-order effects for several reasons. 
First, the form of the expansion is almost certainly not in powers of R-* beyond 
the first few terms indicated here. Anomalous effects in the Ekman layers 
introduce extraneous factors of R in subsequent terms, and the series most 
probably are generalized or composite asymptotic expansions. Secondly, and 
with good fortune, the higher-order effects are really very small in most cases of 
current interest and are not of great importance in describing the principal 
modifications of a basic flow by the viscous Ekman layer. 

The substitution of these expansions, represented by (4.1), into the basic 
equations and the requisite boundary conditions, leads to the following boundary- 
value problems which must be solved sequentially: 

or Gno sin 6 + 8,, cos 8 = 0; 
(A) a(%,, sin 8 + C&,, cos @/a< = 0, (A. 1) 

(B) s,, u,, - ZV,, = - aP,,/ar, (Be 1) 
(Be 2) 

snORb0 = - aPnOla2, (B. 3) 

s,,v,, + 2 u,, = - r-laP,,/ao, 
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with 

on p = 1 (outflow from the boundary layer), and zero initial conditions. 

velocity component at boundaries. This result has been used before. 
Problem (A) leads to the obvious requirement that there be no O(1) normal 

Problem (B) for the inviscid interior modes was studied in 5 3 (where sa0 = iA,). 
Problem (C) for the boundary-layer functions reduces to that solved in 

Appendix 1, upon introducing the new dependent variables 

Q = Gno + iv",, cos 8, q = G,, - iv",, cos 8. 

The corresponding boundary conditions at 5 = 0 are simply 

(4.3) } 
Q = - (U,, + iV,, cos 8),=, esnt = uJ8, w )  esnt, 

q = - (U,, - iV,, cos 8)p=l esnt = b,(B, w)  esnt. 

The essential boundary-layer functions required for the solution of the next 
problem, (D), may be computed at once and are 

finod5 = (2 i  cos 81-1 (Q - q)  dg 

(4.4) 

/Om 

= (2ico~B)-~e~n~(u,y,-*erfy~ t*--b,&*erf,i?A t*), 

= -+tan 8 e k t ( a ,  y;* erfyi t i  + b n ~ ; *  erf&t*), (4.5) 

where yn = s, + 2 i  cos 8 and /3, = s, - 2 i  cos 8. 
The boundary-layer functions are finite for all 8, w and in fact, to a high degree 

of approximation, have the simple time dependence exp(s,t) for almost all values 
of 0 with t moderately large. The exceptions occur in the immediate vicinities of 
the critical latitudes - is,, = A, = rt 2 cos 8. At these positions the modal 
frequency A, equals twice the component of the rotation vector normal to the 
boundary; i.e. Coriolis force equals acceleration, and a kind of resonance occurs. 
Continued forced oscillation of the container at a resonant frequency would 
produce a radically different type of boundary layer at these latitudes. Bondi & 
Lyttleton (1953) speak of boundary-layer eruptions because the outflow from 
these regions, computed on the basis of the ordinary steady boundary-layer 
theory, is infinite. Roberts & Stewartson's (1963) analysis of these zones includes 
lateral shear terms in the boundary-layer equations, and shows that the local 
flow field is not truly singular but of a different order in R. They also conclude 
that the resultant effects on the interior flow are negligible, i.e. O(R4) .  It seems 
very likely that the non-linear terms are essential to the proper flow description 
at the critical latitudes. 

This difficulty is somewhat mitigated in the transient problem with zero initial 
conditions because the actual solution is never just a single simple exponential 
function of time. Continued viscous diffusion to theinterior introduces boundary- 
layer terms such as error functions of time which reflect a new blance at the 
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critical latitude between acceleration and both Coriolis and viscous forces. In 
other words, the Coriolis force and viscous shear are in equilibrium over most of 
the boundary, but it is the acceleration which balances both of these forces 
separately and independently of each other in the immediate vicinities of the 
critical latitudes. For these reasons, the local structure of the viscous layer is 
significantly changed. The velocity functions are finite everywhere (0( 1) almost 
everywhere) but possess a non-uniform behaviour with respect to the large 
parameter 22. Some care must be exercised in the mathematical manipulation in- 
volving this factor especially when limits and integrations are interchanged. 

Thus 'weak spots ' in the boundary layer introduce additional non-uniformities 
into the problem although the total effect on the interior motion remains small. 
These complications make uncertain the exact form of the fundamental expan- 
sions beyond B-* terms. A general expansion theory presumably will involve 
the concepts of inner and outer variables, matching, etc., in several variables 
(see Lagerstrom & Cole 1955) but the task seems definitely non-trivial. 

The use of the Laplace transform (indicated by a bar notation, E) allows a 

with 

on p = 1. A single equation for the pressure is 

and the corresponding boundary condition on p = 1 is 

2- =- 

S 
In  the last formula 
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Now each inhomogeneous term has a simple pole at s = s, (reflecting the fact that 
eSnt is the principal time behaviour of all functions over most of the domain), 
whereas the existence of a homogeneous solution implies that a singularity also 
occurs at s = s,, = ih,. The general solution for pnl must then have two simple 
poles lying in close proximity to each other at s = s,, and s = s,, a distance 
Is,,Rbl apart. The net effect of such a juxtaposition upon inverting the trans- 
forms is to produce a growth rate for pnl which is O(t)  when t N R4. This fact can 
be established most simply by considering the limiting value R = co, in which 
case the two simple poles coalesce into a single double pole. The functionp,, then 
would have as its dominant term, tesnt, so that 

R-*pnle-snt = O(R-*t) + O(R-)t*) + . . . , 
or in general R-*pnle-Snt = 0(1)  + O(R-f) for t = Ri. 

However, the expansions represented by (4.1) are to be uniformly valid through- 
out the spin-up phase and this requires R-4pnl to remain small compared to 
P,,esnt for all t < O(R4).  Therefore, those terms contributing to the first ordering 
factor above must be eliminated through the choice of the parameter s,,. (Terms 
which are U(R-h*)  fulfil the requirement by remaining small at spin-up since they 
represent the effects of viscous diffusion, and are important only when t = O(R).)  
The parameter s,, is chosen to eliminate the difficult terms which are exactly 
those arising from the two neighbouring simple poles. This procedure is obviously 
entirely similar to the elimination of secular terms in classical perturbation 
theory. 

The fact that the two poles actually lie a short distance O(R-4) apart does not 
significantly alter the argument, for a large residue U(R4)  then replaces a time 
growth that is O(t) .  

The proper choice of s,, is determined by assuming that pnl can have only a 
simple pole in the complex plane in the immediate vicinity of sno, whose correct 
location is s = s,. Therefore, let 

- pnl = Pnl(r, w,  z ) / ( s  - s,) +function regular in the neighbourhood of 9,. 

Upon multiplying (4.6) and (4.7) by the factor (s-s,) and taking the limit 
s --f s,,, = ih,, we find that P,, is a solution of 

(4.10) 

and on p = 1, 

+s,,[~cosO~Vno----V,o]. 4 2r (4.11) 
ih, 

The limit process is to be taken in two steps as 

lim = lim lim 
s-+sno R+m W S n  
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and the second limit, R +a, may be interchanged with the integral sign occurring 
in (4.11) only when this is legitimate. In  this manner, singular integrals are 
avoided that arise from the replacement of 

(ih, + S ~ ~ ~ R - ~  2i cos 8)-$ by (ih, t 2i cos B)-*. 

A non-trivial solution P,, of the homogeneous form of the preceding problem 
exists. The value of snl for which the inhomogeneous boundary-value problem 
can have a solution is obtained by multiplying (4.10) by PLo and integrating over 
the volume of the sphere, utilizing the boundary conditions when necessary. In  
this way, it is established that 

) + snl sin 8 (4h; cos 8 W,, + 2ih;l V,, sin 8) 

One further integration by parts with respect to 8 in the first integrand (G = 0 a t  
8 = 0,n) leads to the result 

(4.13) 

Here the limit operation is interchanged with that of integration because in this 
form the integrand is not only integrable, it  is also continuous as R+a.  
Equation (4.12) can be derived by a more conventional approach based on 
functions having the complete exponential time dependence exp (s, t )  every- 
where including the boundary layer, but this approach leaves much to be desired 
and is not discussed here. 

The last two equations can be reworked into a final form. If the complete 
notation 

P.0 = @,keiko, S,O = ih,& s,1 = s,kl, 8, = ih,, + R+S,kl, 

is now introduced then by the simple but laborious procedure of judicious inte- 
gration by parts and algebraic manipulation, it can be established that 

44 Fluid Mech. 20 
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where the integral over 8 is a surface integral with r = COB 8, z = sin 8, and 

The last two functions always have positive real parts and it follows that 

Y,-,~(A,,+~coso)-~ = ~ - ~ [ ~ A , , + ~ c o s B I ~ ( A , , + ~ c o s ~ ) - ~ - ~ I ~ , , + ~ c o s ~ I - + I ,  
p;&in,-2cose)-1 = 

(4.16) 
Therefore ReSnkl < 0 for lAnkl < 2 and it is not difficult to show that 

IImSnk11 < 1Resn,,l* 
All modes are stable and decay in the spin-up time scale, t = O(R4). 

The integrand of the surface integral is finite and continuous for all values of 8. 
From the exact form of the eigenfunctions, (3.45), evaluated on the surface of the 
sphere, i t  is seen that 

(4.17) 

with p = cos 8. This expression is identically zero at p = &Ank = cos 0, for it is 
merely the basic eigenvalue relationship (3.46). Therefore, at  the critical latitudes, 
the integrand behaves like lcos8 _+ +Ankl*. 

Using the above results, the decay factor of any mode can be calculated with a 
modest amount of labour. The interior inviscid mode, (4.1), is then uniformly 
valid through the spin-up phase. 

The effective use of equation (4.14) can be illustrated by applying it to a simple 
but important problem. Consider a fluid-filled spherical container rotating 
rigidly about a given axis. At time zero, the direction of the axis of rotation of 
the container is impulsively changed a small amount. Rigid rotation about an 
axis other than the rotation axis is, however, a possible inviscid mode in the 
co-ordinate system moving with the spherical container. In  fact, this interior 
motion corresponds to the particular vaIues 

P,, = irzeiw, U,, = zefw, V,, = izeio, W,, = -refw 

or k = 1, A, = 1, @, = rz. The result is 

s,I = - 2.62 + 0.2593. (4.18) 

This is identical with the limiting result of Stewartson & Roberts (1963) for the 
viscous correction to an interior mode of a precessing ellipsoid. Their calculation 
allowed the replacement of the ellipsoid by a sphere for certain purposes and 
involved an iteration procedure applied to a single mode requiring the complete 
solution of the problem at each stage. Essentially, the expression exp ( - Rat) 
appears therein as a power series that must be ultimately reconstituted to obtain 
a uniformly valid solution. Formula (4.14) offers the correction to any mode in 
relatively simple form and the analysis which led to it can be extended with a 
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modest amount of difficulty to a consideration of arbitrary configurations. It 
must be recognized, of course, that. these analyses have somewhat different 
objectives, and no attempt is made here to solve the precessional problem by 
present methods. 

As another example, consider the mode 

= z2 - +z4 - 2r2z2 + r2 - +r4 

corresponding to n = 4, k = 0, m = 1 in the notation of (3.47). The associated 
eigenvalue is h = & 2($)4 

and the computation produces the decay factor 

sgOl = - 3.77 + 0.4333. (4.19) 

Experiments performed thus far by W. V. R. Malkus at U.C.L.A., K. E. 
Aldridge and A. Toomre at M.I.T., and W. G .  Wing at the Sperry Gyroscope Co. 
are as yet unreported in the literature. Private communications indicate that the 
agreement between theory and experiment relating to frequency end decay rate 
is very close. 

The spin-up mode requires special consideration for its decay factor is known 
(G-H) to be a function of T of the form exp [ - u(r)  R d t ] .  This is consistent with 
the preceding results once i t  is recognized that 

v(r) = a(r) for r, < r < r,+Ar,, 

v(r) = 0 elsewhere, 

is a legitimate eigenfunction corresponding to h = 0. As such, the boundary 
corrections to this mode would lead to a local decay factor u(r,,). The general mode 
V(r )  can be interpreted as a sum (integral) of such step function modes, each with 
a decay factor depending on its radial position. Thus the above quoted result 
from (G-H) would be consistent with the procedure invoked in this section. 

Of course, the fact that h = 0 implies that the significant time scale for this 
mode is really O(R*). The spin-up time should then be used as a, characteristic 
value and not the period of rotation. If, now, the more appropriate time scale 

T = R-Jt (4.20) 

is introduced into the basic equations (recall that the spin-up mode is axially 
symmetric), the rescaled problem is 

Rdu, - 2v = -pr + R-l(u, + u,, + u,/r - u/r2); 
Rdv, + 2u = R-l(v, + v,, + v,/r - v/r2), 

(4.21) 

44-2 

i R-tw, = -p,  + R-l(w, + w,, + wr/r), 
u,+u/r+w, = 0;  

u = v = w = O  on p = l ,  u=O, v = v ( r ) ,  w=O,  a t  t = 0 .  
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The analysis now proceeds in an identical manner to that in (G-H) and reference 
is made to that paper for complete details. Let 

(4.22) 1 u(r, z , 7 )  = R-hl(r ,  z, T )  + ... +Co(c, 6, 7) +R-3C1(Q 6,7) + . . ., 
w ( ~ , z , T )  = vo(r, 7)+R4vl(r ,z ,7)  + ... +G0(C,6,7) +R-$G1(C,6,7)+ ..., 
w(r, z ,7)  = R-*w,(r,z,~) + ... +So(C, 6, 7) +R-hZl(C, 6 , ~ )  + ..., 
p(r ,  z , 7 )  = po(r, 7) + R+pl(r, z, 7) + . . . + Bo(C, 6 ,  7) + R+fj1([, 6,7) + . . . . 

The matching of interior solutions to boundary-layer corrections leads directly 
to an equation for wo alone, 

and the final result is 
avo(r, 7)/a7 = - v0(r, T)/( 1 -P)Q, 

wo = w(r) exp { - ( I  - r2)-27> (4.23) 

with apo/ar = 2vO(r, 7). 

The arbitrary function w(r) appearing in this equation is determined from the 
initial conditions. An important observation, worth repeating, is that the decay 
rate for the spin-up mode is a function of radial position. It has already been 
noted that the spin-up mode is responsible for the extraction of the mean 
circulation of the initial velocity distribution. The exact form of the small velocity 
components ul, w1 as well as the boundary-layer corrections may be found in the 
cited reference. 

5. The initial-value problem 
The results of the preceding sections are gathered together here so that the 

complete interior solution of the initial-value problem, uniformly valid in time 
through spin-up, may be displayed in full. 

E’ormulae (3.31) to (3.34) need only be corrected to include the decay factory 
snkl computed in the last section. The complete uniformly valid interior solution 
is 

+ 1 Z A  (I - - -  )-1 A!-@,,+-- ’@,‘) En’, (5.2) 2 n, k nk (“2 ,“ ar 

*4 ~ ( r ,  W , Z ,  t )  = i x 2- En,, 
n,k 

(5.3) 

p(r ,  w ,  z ,  t )  = $(r)  exp { - R-t( 1 - r2)-$ t> + x A,, QnkEnk, (5.4) 
n, k 

with 
At time t = 0, the initial conditions, u*(r, w,  z ) ,  w*(r, w ,  z ) ,  w*(r, w ,  z )  are used to 
determine the constants A,, and the arbitrary function v(r) as detailed in (3.39)- 
(3.42). Thus 

w(r) = &i$/dr, En, = exp [i(hnkt + kw) +snklR-+t]. 
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Finally, the decay factor is that of equation (4.14) 

with Y n k  = i(hnk+2cos8), ,8nk = i(hnk-2cos8). 

We shall not record the associated boundary-layer functions. 

6. Forced oscillations 
The response of the fluid to the forced oscillation of the spherical container is 

another important problem that can now be solved. Suppose for definiteness, the 
sphere is oscillated a t  frequency a, then it is of interest to know the induced 
response (the amplitude) of each natural mode that is excited. The inviscid modes 
are stimulated by the small mass flux into the viscous boundaries, i.e. the 
convergence or divergence of the Ekman layers. The boundary condition for the 
interior flow at the walls is then 

ru+zw = P(8,w)ei"l at p = 1, (6.1) 

where P(8, w )  is a known function. Since p(6, w )  = 2 Fk(e) eiko, it  will be sufficient 

to consider the response to a single Fourier component, say li;c(8)eikweiut. The 
equivalent problem for the pressure 

P = $(r, x )  eikweial 

k 

is 

with 

Here G,(6) is a known function. This general boundary-value problem may be 
solved by a Fourier expansion involving the modes associated with index k, 

00 M n t  

$ = 2 Anmk@nmk = 2 Anmk@nmkt (6.4) 
12, m n=l m=l 

where the complete notation introduced in (3.47) et seq. is utilized. For definite 
values of .n and k,  the summation index m varies between one and integer Mnk, 
representing the total number of acceptable eigenvalues arising from (3.46). 
Recall that (Annsk, @,k) is the mth characteristic pair corresponding to the 
associated Legendre function Pk(z). It is especially important to note, once 
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again, that all the functions Qnmk (m varying, n, k fixed) reduce to the same zonal 
harmonic on the surface of the sphere, i.e. 

@)nmklp=l = p i ( i A n m k )  pk(cOso). (6.5) 

The substitution of (6.4) into (6.2) and (6.3), together with use of (3.10) and 
(3.1 l ) ,  implies that 

1 1 a2  c Anmk (7-2) Anma @nmk = O, (6.6) 
n, m 

These may now be multiplied by r@v,&, integrated over the volume and surface 
of the sphere respectively, and added together to obtain 

Finally, with use of the orthogonality condition (3.15), this in turn is expressible 
as 

and the primed summation symbol indicates that (n,m) 9 (v,P). However it is 
apparent from the particular form of the eigenfunctions (6.5) that 

There are then Mvk equations in Mvk unknowns, AvBk, /3 = 1, ..., Mvk, and the 
system is exactly soluble. The coefficients give the induced modal amplitudes; 
it  is now a straightforward task to solve the most general forced oscillation 
problem. 

In  the case of axial symmetry, k = 0, the solution is particularly simple 
because the equations of (6.11) uncouple. 

Inspection of this finite set of linear equations indicates that resonance occurs 
whenever a = an eigenvalue. Since the eigenvalue spectrum is dense for 
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Ihl < 2 resonance always occurs in the linear theory whenever a is in the same 
range. However, the actual resonant amplitude differs from mode to mode 
according to their ability to absorb energy; the higher modes are more difficult 
to excite. Be that as it may, the linear theory must be corrected for the effects of 
viscosity to properly account for the response at resonance. This may be done 
simply by using the more precise eigenvalues, those corrected for viscosity to 
order R-4, in all of the preceding formulae. 

The expansion process developed in this paper is probably the first step 
towards ft complete singular perturbation theory utilizing the concepts of inner 
and outer variables (Lagerstrom & Cole 1955); however, the existence of multiple 
time scales, boundary layers, critical latitudes, and side wall effects certainly 
make the task extremely difficult, to say the least. The lack of a complete 
expansion theory may provide the incentive for a more systematic investigation 
even though the results which have been attained seem very good on the whole. 

This research was partially supported by the Office of Scientific Research of 
the U.S. Air Force, Grant AF-AFOSR-492-64. 

General boundary-layer solution Appendix 1 

Consider the general boundary-layer problem 

(&-:) Q-2icos8Q = 0,  

and Q = QOe8ot, q = qoesot for 5 = 0, Q = q = 0 when t = 0. Of particular im- 
portance is the function 

The solution is easily obtained by taking Laplace transforms 

and using the inversion formulas of Foster & Campbell (1948, especially 
no. 805.3). The results are 

Q = +Q0e8ot [exp { -yiCerfc (5/2# -?at*)} 

+ exp {&erfc (C/2t4 + y*t+)}], 
q = +qoesot[exp{ -P*{erfc (5/2&+,84#)} 

+ exp {p*Cerfc (C/2t+ +P*t'))], 
where = so+2icose, p = S , - ~ ~ C O S ~  

and 9, p4 have positive real parts. 
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Of frequent use in the analysis is the result 

$ I E ; = , ,  = - * + i e ~ ~ t [ & ~ ~ - +  erf y*tt - qoP-* erf P*t*], (1 5 )  

and it is also worth while noting that the Laplace transform of this function is 

(I 6) &=o = - * ~ [ Q ~ / ( S  - so) (S + 2i cos e)+ - p0/(s -so) (S - 2i cOs qq. 

Note added in proof 
Since this paper was submitted, a general theory of contained rotating fluid 

motions has been completed. The theoretical analysis of transient flows inside 
arbitrarily shaped rotating containers is found to be greatly simplified and 
clarified by using the velocity vector and not the pressure as the quantity of 
primary importance. The derivations of properties 1, 2, and 3 may then be 
developed in a more direct manner than indicated here. For example, the ortho- 
gonality relationship is really a statement involving the dot product of complex 
modal vector velocities integrated over the container volume. Other properties 
have also been extended and it has been shown that the generalization of pro- 
perty 4 concerns mea.n circulation about geostrophic contours, 

However, for specific applications, the actual solution procedure requires 
solving for the pressure function first, since only then can the velocity compo- 
nents be determined. Thus in any particular problem i t  would be necessary to 
convert the general theory, written in terms of the velocity, into the equivalent 
structure for the pressure alone to achieve the most efficient and simplest means 
of computation. The present work is then typical in every way of the analysis 
for any particular container configuration. 
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